Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

نویسندگان

  • Anne Mayer-Scholl
  • Jayaseelan Murugaiyan
  • Jennifer Neumann
  • Peter Bahn
  • Sabine Reckinger
  • Karsten Nöckler
چکیده

Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of MALDI-TOF MS for the Identification of Food Borne Bacteria

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful tool for the routine identification of clinical isolates. MALDI-TOF MS based identification of bacteria has been shown to be more rapid, accurate and cost-efficient than conventional phenotypic techniques or molecular methods. Rapid and reliable identification of food-a...

متن کامل

Rapid genus- and species-specific identification of Cronobacter spp. by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

Cronobacter spp. are Gram-negative opportunistic food-borne pathogens and are known as rare but important causes of life-threatening neonatal infections. Rapid and reliable identification of Cronobacter species and their differentiation from phenotypically similar, nonpathogenic Enterobacter turicensis, Enterobacter helveticus, and Enterobacter pulveris have become increasingly important. We ev...

متن کامل

Routine identification of Nocardia species by MALDI-TOF mass spectrometry.

We here show adequate species identification for bacterial isolates of the genus Nocardia spp. through VITEK mass spectrometry. Application of a specific sample preparation method in combination with a robust matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) database leads to 94% accurate identification to the species level on a set of 164 isolates. The...

متن کامل

The use of Matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis.

Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016